Taming Energy Costs of Large Enterprise Systems Through Adaptive Provisioning
نویسندگان
چکیده
One of the most pressing concerns in modern datacenter management is the rising cost of operation. Therefore, reducing variable expense, such as energy cost, has become a number one priority. However, reducing energy cost in large distributed enterprise system is an open research topic. These systems are commonly subjected to highly volatile workload processes and characterized by complex performance dependencies. This paper explicitly addresses this challenge and presents a novel approach to Taming Energy Costs of Larger Enterprise Systems (Tecless). Our adaptive provisioning methodology combines a low-level technical perspective on distributed systems with a high-level treatment of workload processes. More concretely, Tecless fuses an empirical bottleneck detection model with a statistical workload prediction model. Our methodology forecasts the system load online, which enables on-demand infrastructure adaption while continuously guaranteeing quality of service. In our analysis we show that the prediction of future workload allows adaptive provisioning with a power saving potential of up 25 percent of the total energy cost.
منابع مشابه
Preface Acknowledgements
One of the most pressing concerns in modern datacenter management is the rising cost of operation. Therefore, reducing variable expense, such as energy cost, has become a number one priority. However, reducing energy cost in large distributed enterprise system is an open research topic. These systems are commonly subjected to highly volatile workload processes and characterized by complex perfo...
متن کاملEconomic Load Dispatch using PSO Algorithm Based on Adaptive Learning Strategy Considering Valve point Effect
Abstract: In recent years due to problems such as population growth and as a result increase in demand for electrical energy, power systems have been faced with new challenges that not existed in the past. One of the most important issues in modern power systems is economic load dispatch, which is a complex optimization problem with a large number of variables and constraints. Due to the comple...
متن کاملLeveraging the Cloud for Green IT: Predicting the Energy, Cost and Performance of Cloud Computing
Cloud computing is maturing, becoming a viable alternative to classic on-premise IT. Cloud facilitates scalability, promising lower fixed and variable costs while supporting enterprise growth. The scalability benefits and cost savings can be achieved through ondemand infrastructure provisioning and reduced on-premise energy consumption. The benefits are compelling; however, a quantitative analy...
متن کاملDecentralized Adaptive Control of Large-Scale Non-affine Nonlinear Time-Delay Systems Using Neural Networks
In this paper, a decentralized adaptive neural controller is proposed for a class of large-scale nonlinear systems with unknown nonlinear, non-affine subsystems and unknown nonlinear time-delay interconnections. The stability of the closed loop system is guaranteed through Lyapunov-Krasovskii stability analysis. Simulation results are provided to show the effectiveness of the proposed approache...
متن کاملEmpirical prediction models for adaptive resource provisioning in the cloud
Cloud computing allows dynamic resource scaling for enterprise online transaction systems, one of the key characteristics that differentiates the cloud from the traditional computing paradigm. However, initializing a new virtual instance in a cloud is not instantaneous; cloud hosting platforms introduce several minutes delay in the hardware resource allocation. In this paper, we develop predict...
متن کامل